Understanding the quantum world

with a tennis racket: How classical
mechanics helps control qubits

QuSCo Seminar
Wednesday, 24 march 2021

Dominique SUGNY

Laboratoire Interdisciplinaire Carnot de Bourgogne, Dijon, France.

Université Bourgogne Franche Comté




Collaboration and Fundings

A joint work between mathematicians, physicists and chemists

» Group of S. J. Glaser (Munich, Germany)
» Group of P. Mardesic (Dijon, France)
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Introduction to Quantum control

Quantum effects:
Atomic orbitals (Probability of
95% to find the electron)

Quantum theory:

Theoretical basis of modern physics that explains the nature and behavior of matter
and energy at the atomic level.

Fundamental quantum effects ||— Quantum technologies

Control theory: Realization of basic operations

min. time
min. energy




Quantum control

Manipulating the quantum dynamics of atoms, molecules and spins with external
electromagnetic fields.

Design of specific electric or magnetic fields

Application of tools of control theory (Optimal control theory) to
guantum physics

A famous example in classical physics:

How do we build up physical
intuition in quantum control ?

Analogy with classical physics

Apollo and Smart |



The Tennis Racket Effect

The tennis racket effect

- Global Aspects of
Classical Integrable Systems

R. H. Cushman and L. M. Bates

Geometric effect that can be observed in any three-dimensional asymmetric
rigid body.



The Tennis Racket Effect




How to control a skate board with the tennis racket effect

According to the tennis racket effect, the Monster Flip is impossible.

It can be shown that it 1s possible, but with a very low probability....



References about the tennis racket effect

Scientific papers:

» M. S. Ashbaugh, C. C. Chiconc and R. H. Cushman, The Twisting Tennis
Racket, J. Dyn. Diff. Eq. 3, 67 (1991).

» R. H. Cushman and L. Bates, Global Aspects of Classical Integrable Systems
(Birkhauser, Basel, 1997).

» L. Van Damme, P. Mardesic and D. Sugny, The tennis racket effect in a three
dimensional rigid body, Physica D 338, 17 (2017)

» P. Mardesic, G. J. Gutierrez Guillen, L. Van Damme and D. Sugny, Phys. Rev.
Lett. 125, 064301 (2020)

Popular studies:

> Images des Mathématiques (Mardesic and Sugny, 2019)

» Le monde (D. Larousserie, Mardesic and Sugny, 2020)

» Movies on Youtube: Physics girls (2019), the Monster Flip....
» The Dzhanibekov effect, Wikipedia page...




Classical dynamics of a three-dimensional rigid body

The rotational dynamics of a three-dimensional rigid body is described by an
integrable Hamiltonian system.

The position of the rigid body is given by an element of SO(3).

The three Euler angles are used as coordinates.

Two frames:

» A space-fixed frame (X,Y,2)

» A body-fixed frame (x,y,z)

Ref.: V. I. Arnold, Mathematical methods of Classical Mechanics



AXxes and moments of inertia

Mass repartition: Inertia matrix
_ 2 3
» Elgenvectors: Inertia axes I.fk - Ap(r)(r 5jk _xjxk)d r,

» Eigenvalues: Inertia moments

Convention: |, < |y <l




Classical dynamics of a three-dimensional rigid body

The dimension of the phase space is 6.

In the absence of outside forces, there are four first integrals (the angular
momentum M and the energy): The Euler top.

For a regular point, the dynamics are restricted to a two-dimensional torus.

In the reduced phase space (M,,M,,M,), the trajectory Is the intersection of
two surfaces:

_ My My M2
2 i ey

T Y z
M?* = Mg + M; + M

Rem.: Extension to a n-dimensional rigid body with the Lax pair approach



Classical dynamics of a three-dimensional rigid body

Intersection of a sphere and an ellipsoid.



Classical dynamics of a three-dimensional rigid body

Reduced phase space:
> Rotating and oscillating trajectories, separatrix

» Four stable and two unstable equilibrium points.



Mathematical description of the tennis racket effect

Definition of a particular set of Euler angles:

Tennis racket effect :
Ap=2m, Ap~mn

S




Mathematical description of the tennis racket effect

Angular momentum: Rotational equivalent of the momentum

M, =l@

7

/

Angular Angular velocity
momentum

Euler’s equations: Dynamics of the angular momentum in the frame attached
to the racket

- L1 Constants of the motion:
M, =—(=-)M M, M2 M? M2
l, 1, E = + +
) 21, 21 21,

. 1 1 " Y
M, =7 MM, MZ=M?+MZ+M?

\

|\/'|Z=—(Ii—|i)|\/|xl\/|y

X y

Integrable system (Euler top)




Mathematical description of the tennis racket effect

Euler’s equations: Dynamics of the Euler angles

-

M, =—-M sin 8cosy

M. =Msin@siny | <— the two angles described the dynamics in
g the reduced phase space.

N

(M, =M cosé

The dynamics of the third angle is given by the angular velocity.

-

0=M (i —i)sin 0sin y cosy We introduce the following coefficients
I I
Yy X
I
-2 2 y
- sin cos a=—-1
=ML+ =5 |
l, N z
I
=2 2 <b: __Y
Ip‘zM(I1 _5|r: W+Cof W)cos@ |,
: ’ ’ ’ 21,E
C= —
M2

Perfect asymmetric rigid body: ab — +oo




Mathematical description of the tennis racket effect

The tennis racket effect is a geometric effect which does not depend
directly on the duration of the process.

We can reduce the dynamics to consider only two angles:

Phase space

dy

do

. \/(a+ bcos® y)(c+bcos’ y)
B 1-bcos’ i
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Mathematical description of the tennis racket effect

Analogy with a standard planar pendulum:

Phase space

o/

Phase space
-0.5 0 0.5 '
\ Wl /

A variation of 1

Tennis racket effect

A variation of 2mr



Mathematical description of the tennis racket effect

Robustness of the tennis racket effect against initial conditions:
|AY|/m
2

0 0.5
Yo/ T
» What is the geometric origin of the tennis racket effect ?
» Is it possible to estimate the robustness of the effect ?

» 3 parameters (a,b,c)



Mathematical description of the tennis racket effect

We consider a symmetric configuration: |y, = 5 +EDW, =——¢

The new parameter is the defect to a perfect tennis racket effect.

Using a change of variable and the parity of the integral:

(1—bx)dx
A¢(5) Ln gb\/X(X ,B)(l X)(X 0()
x:coszw;a:—%;ﬂ:_%

Incomplete elliptic integral depending on the different parameters of the problem.

We study the solution of the following equation:

A¢a,b,c (5) — 272-




Mathematical description of the tennis racket effect

(1—Dbx)dx
b x(x— B)1—X)(X— )

We complexify the x- coordinate and we introduce a Riemann surface:

= X(x=B)1-x)(x-a)

The integral is interpreted as an Abelian integral over this surface.

Ap(e)= [ =

Its behavior is given by the geometry and the singularity of the surface.



Mathematical description of the tennis racket effect

Two different configurations: A pole appears when ¢ goes to 0

‘IB‘ <sin®e ‘,8‘ >Sin~2 g e
7—>7+5;jm¢0 7/_)7/+5;_[a)=0
5 5

In the first case, by the Picard-Lefschetz formula, the integration contour is
deformed to itself plus a loop around the singularity.

This property reveals the multi-valued character of the function: a logarithmic
function. No logarithmic divergence in the second case !




Mathematical description of the tennis racket effect
We deduce:

A¢(5):% 1bc(Sin’? g)—%ln(sm £)
\

Bounded and analytic function (m is given by the bound of h).

Theorem of the Tennis Racket Effect:

For all ¢ such that: ‘C‘ <bexp(—27z+ab —m)
For ab large enough, the equation A@, ; .(£) =27

has a unique solution which verifies:

arcsm(\f ) < & <arcsin(exp(—z+ab ——))

This leads to:
lim &.(a,b,c)=0

ab—+w




Mathematical description of the tennis racket effect

Estimation of the robustness of the tennis racket effect:

Ap=2nr Ay =r—-¢
£~ exp(—\/%A—¢)
N

N

Robustness with respect to the shape of the body

| |
azl—y—l;bzl—l—y

yA X

Refs.: L. Van Damme et al, Physica D (2017)



The Monster Flip effect

The same analysis can be conducted for the Monster Flip effect.

Ag = 2”’}*‘9 1-bcos® du
” \/ (a+bcos”y)(c+bcos’ y)
We arrive at:
Ad(g) = 2y .. (sin® &) + 1 In(sin” &)
Jab *” Jab

& z%p\@@)

This parameter has to be very small



How to use this effect in the quantum world ?

Formal equivalence between the Euler equations and the Bloch equations:

(0 =M, /1, M, /I (0 -Q, Q
M=| M,/I, 0 M /I M|empM=| Q 0 -Q |M
M, /1, =m0 -Q, Q 0 )

Euler equations Bloch equations (spin %2,

magnetic resonance)

—

M —— Quantum state

Qi ——> External control fields

Identification: (3. = —_ mmmms) The moments of inertia are free parameters



How to translate this property into the quantum world ?

Formal equivalence between the Euler equations and the Bloch equations:

<

(0 —M,/I,
=| M,/I, 0
-M, /1, —M, /1,

M, /1,

M, /1,
0

\

)

<

Euler equations

(0 -Q, Q,)
M=l Q 0 -Q

-Q, Q 0

<

Bloch equations

Identification: Specific choice of the control fields (only two fields are available)

(Q =M,/1,=0Q
|, =+o0

Q,=M,/1,=A

Case (a):

\

Case (b):

Q. =M, /1,
1Q,=M,/1,
\|3:+oo




Geometric control of population transfer

We consider the case (a) to illustrate the properties of the control fields.

I, =1
Without loss of generality, we can set: |{

I3:k—12,ke[0,l]

\

Some standard solutions of the Bloch equation can be recovered from limiting
cases of the tennis racket effect:

K— 0: Pi-pulse

. Adiabati | n
1 Adebatepse Q= \/izsech(iho)
— T
Separatrix : Allen-Eberly solutions A
A= £k tanh(£+p)




How to use this effect in the quantum world ?

A tennis racket effect for a spin ¥z particle:
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Trajectories of
the angular
momentum

A trajectory close to the separatrix

A robust transfer of state for the
gubit

Refs.: L. Van Damme et al, Sci. Rep. (2017)



Robustness of the control process

Evaluation of the robustness in the spin case:

QY =1+ ), IX=1;Iy=F;IZ=+oo
Q,=Q,+0
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< ¥ B T TR S 0.5 J
P fids 1
08t / K
¥ 1 S 0
0.5
0.6 "‘,/‘ ¥ (
-\. )t,’ ! _05
0.4 \ y 0
(c
¥ X
02t/ \
/ 3 0 :
ol
0.5 1 1.5
1+ a 05 0 1-1 0 1
%) )

The robustness of the process can be adjusted by choosing appropriate moments
of inertia (parameter k)



Implementation of one-qubit gates

Using the Tennis Racket Effect, novel control strategies in quantum computing
can be found: One-qubit gate.

1 0
Quantum phase gate: U =

0 e
Montgomery phase: A¢ — ZE N

//IvI EN

Dynamical contribution Geometric contribution

The dynamical contribution is not
robust.

A concatenation of pulses to
eliminate this contribution.

Ag = 2[arcsin(y/1-kZ) —arcsin(y/1-k.)]




How to use this effect in the quantum world ?

Another idea Is to consider the dynamics of asymmetric top molecules.

Chlorobenzene molecule (C;H:Cl)

Signature of this classical effect on:
» Spectrum of the asymmetric molecule

» Dynamics of the wave function



Conclusion and perspectives

Signature of the tennis racket effect on the wave function dynamics.

PHYSICAL REVIEW LETTERS 125, 053604 (2020)

Quantum Persistent Tennis Racket Dynamics of Nanorotors

Yue Ma,] Kiran E. Khosla ,' Benjamin A. Sticklcr,"z‘" and M. S. Kim"’

LQOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

zi-‘mrulry of Physics, University of Duisburg-Essen, 47048 Duisburg, Germany

Classical €2

U \/ NS time 1 v
—e s

Quantum A}/
rm N\ A

l

U J VUW ¥ ‘e

Thermally averaged

— trajectories

Quantum tunneling

Rem.: This effect could be observed
In a neighborhood of any singular

torus.



Conclusion and perspectives

Different perspectives from these results:

» A Lax pair approach of the Tennis Racket Effect (independent of the
angular coordinates): Extension to SO(n)

» Arigorous semi-classical analysis of the Tennis Racket Effect in the
quantum regime (singular Bohr-Sommerfeld rules)

Semi-classical limit / asymmetric limit

» Other physical or chemical applications of the Tennis Racket Effect.

» Experimental demonstrations of the quantum effect.



