QuSCo on-air: Optimal Control in the Chopped Random Basis (Dr Matthias Müller)

In this session of QuSCo on-air, our guest, Matthias Müller, from Forschungszentrum Jülich, gives a talk about Optimal Control in the Chopped Random Basis, explaining also what RedCrab is.

We are at the verge of the second quantum revolution where quantum technology leaves the lab and enters industrial products. Fragile quantum systems with their unique features like superposition and entanglement can offer new perspectives in computation, communication and sensing/metrology. However, they need sophisticated mechanisms of control to perform the desired tasks. Quantum Optimal Control has proven to be a powerful tool to accomplish this task [1]. I will report on the optimization in the dressed chopped random basis (dCRAB) [2], a versatile and robust approach to Quantum Optimal Control, that allows both closed-loop and open-loop optimization with limited pulse bandwidth and guaranteed convergence in a broad range of typical applications. The interplay of constraints, control resources and noise [3] is crucial for the overall performance of the controlled operation. I will also present the software package RedCRAB that comes with a very user-friendly interface that allows the connection with any existing simulation [4] or experiment [5].

[1] C. Brif et al., New J. Phys. 12, 075008 (2010), S. Glaser et al., Phys. J. D 69, 279 (2015), P. Rembold et al., AVS Quantum Sci. 2, 024701 (2020)
[2] P. Doria et al., PRL 106, 190501 (2011), N. Rach et al., PRA 92, 052343 (2015) (ES)
[3] S. Lloyd et al., PRL 113, 010502 (2014), M. Müller et al., arxiv:2006.16113 (2020)
[4] A. Omran et al., Science 365, 570 (2019)
[5] F. Frank et al., npj Quantum Information 3, 48 (2017)

You can find future and previous instalments on our youtube channel.